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Improving the Resolution of Bearing in Passive Sonar Arrays
by Eigonvalue Analysis

Don K. Johnson
Stuart DeGraaf

Department of Electrical Engineering
lice University

Houston. Texas 77001

An array of acoustic sensors is placed in a known spatial pattern to record the
acoustic environment. Measurement of the acoustic field by an array offers two basic
improvements over the signal-processing capabilities of a single sensor. The first is the
determination of the bearing of the acoustic source(s). Bearing cannot be obtained with a
single sensor whereas an array offers some bearing resolving capability. This capability
is usually measured by the just-detectable separation of two equi-strength sources for a
given signal-to-noise ratio at one sensor in the array[61. The determination of the
bearing of a remote source of acoustic energy remains one of the fundamental problems of
passive sonar systems. The waveforms recorded by each sensor can be acquired with as much

fidelity as desired. In contrast, the size and geometry of the array is usually limited
by physical considerations; these limitations restrict the spatial resolution of source
bearing. The second improvement is the increase of signal-to-noise ratio. If the noise

field is uncorrelated at each sensor location with respect to all other locations, the
signal-to-noise ratio in the array output is increased by a factor equal to the number of
sensors comprising the array. This factor decreases when the noise field is correlated at
the sensor locations. The measure of improvement in the signal-to-noise ratio is array
gain: the ratio of the signal-to-noise ratio at the array output to that obtained with a
single sensor.

Adaptive boamforming methods (ABF) are known to have superior bearing resolution
capabilities when compared to conventional beamformers (in a theoretical sense)[6].
Specifically, the minimum energy method has been analyzed extensively in this regard.
However, there is no theoretical basis indicating that this method has the best-possible
bearing resolution properties. On the other hand, the array gain provided by this method
is optimum: no other boamfoming technique can yield a larger increase in signal-to-noise
ratio. This report is concerned with a now AF scheme which is similar in many respects
to the minimm energy method. It can demonstrate greacly increased bearing resolution
properties but at the expense of array gain. The scheme is based on an sigenvector-
eigenvalne decomposition of the empirical correlation matrix, which is then truncated so
as to retain only those terms which best contribute to increased bearing resolution. This

approach is similar to those described by Scbmidt[13] in his MUSIC system. by Owsley[12]
in his nodal decomposition approach, and by Bionvenu(2, 31. Analytic results are

presented here which contrast the bearing resolving properties of these various
eigenveotor methods and the minimum energy method.

'l. nLuiu
Lot Zn(t) denote the outputs taken from an array of sensors having a known Seometry.

hconsists of computing the quantity

-1-



J.hasoma Doezaai Improving Bees Resolution

y(t) =- a1(t-TZ) (I)

where aa is the amplitude weighting (shading) applied to the .thLsensor output, va is the

delay applied to the uJu-sensor output, and M is the number of sensors in the array. The

parameters (aa) and (v of a beam are chosen according to some desired criterion (e.g.,

steering the beam in a particular direction, minimizing sidelobe height. etc.).

Beamfomaing can also be viewed as a type of multidimensional spectral analysis[l. 91.
Evaluating the Fourier transform of the beam y(t), we have

y M) = ae al (f). (2)

Therefore, at each temporal frequency f. the Fourier transform of the beam can be written
as the dot product of two vectors

1(f) - A'q (3)

where A denotes the steering vector consisting of the elements

A a ea a

and I denotes the vector comprised of the Fourier transforms of the sensor outputs. Here,
A' denotes the conjugate transpose of A. Assume that we have a linear array of equally-
spaced sensors; in this instance, the delays v will be of the form vn mT. Equation

(2) becomes

"T'(f, T) f% aeJma'1 (f). (4)

Consequently, Y(f, T) is the Fourier transform of the sequence a I (f . For a linear

array, computing a transform along the index a is identical to computing the transform in
space across the array. Y(f. T) is. therefore, the spatial transform of aaX a(f) evaluated

at the spatial frequency k - fT. The result of applying a particular shading a is to

convolve the true (infinite aperture) spatial spectrum with the Fourier transform of
ama, U0,... N-I, thereby smearing the true spectrum and limiting the resolution that can

be obtained.

fl IA~k-bJ*1UJSa Inkagima
One can obtain a set of weights (or, equivalently, a steering vector) to achieve

better resolution by adapting them to the particular noise field and signal field

21



3ohasm Der&a Improving Bearing Resolution

impinging on the array. In these adaptive beamforming schemes, the steering vector is the
solution to an optimization problem(4, 11]: find the steering vector which minimizes the
energy in the beam subject to the constraint A'_ - 1, where Z is the constraint vector.
The energy contained in a beam can be expressed by the quadratic form A'UA where R denotes
the empirical spatial correlation matrix of the Fourier transforms of the sensor outputs.
The correlation matrix I is usually estimated from the sensor outputs by a variation of
the Bartlett procedure. The output of each sensor is sectioned and windowed. The Fourier
transform of each section is evaluated and the vector I (f ) of Fourier transform values

at the frequency f across the array for the ilk section is formed. Assuming that I

sections are available, R is computed according to

Usually I is taken to be the number of statistically independent terms used in the
empirical computation of the correlation matrix R; X is frequently referred to as the
time-bandwidth product.

The solution to this optimization problem is

A - -
(6)

The resulting value of the energy in the beam is

A'n - (Z' 1Z) - 1 (7)

In the so-called high-resolution(S] or R IRS=.iauz scheme, the constraint vector Z is a

plane-wave direction-of-look vector ], each element of which is given by W - ej 2= k

m
where k corresponds to a specific spatial frequency. As k - fT and f is known, each value
of k corresponds to a specific per-channel delay. Defining 0 to the bearing of the source
relative to array-broadside, T - (d/f)sin G. Consequently, spatial frequency k is
related to bearing 9 as k - (dX))sin 0. The constraint A*][ - 1 fixes the gain of the
steering vector in the direction-of-look I to be unity. Forcing the energy to be minimum
thereby reduces the contributions from plane-waves arriving from other directions and from
the noise field. The energy in the beam corresponding to the spatial frequency k is
expressed by

S k) - (8)

The bearing of the target(s) is determined by finding the spatial frequency(s) at which
the quantity in equation (8) achieves maxima. The maximum likelihood spectral estimate is
closely related to the minimum energy estimate, but differs from it in an important way.
The maximum likelihood uses the noise-only correlation matrix in its evaluation of the
bem energy.

-3-
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e raS (k) (W (1 1 71)1 
(9)sML - - 1

Here • -E['], the theoretical correlation matrix of the noise component of .1. Noten

specifically that the matrix Rn is assumed to be a known quantity and is not computed from

empirical data. The maximum likelihood method yields the optimum array gain(6, 7]. The
maximum likelihood and minimum energy methods yield the same array gain when the beam is
steered toward the acoustic source(6].

From the viewpoint presented here, there is great flexibility in choosing the
constraint vector 7. One wonders if there is a particular choice for the constraint
vector which can maximize the spatial resolution of source bearing. For example, choose a

constraint vector of the forn

7 - C! (10)

where C is a matrix to be described. The energy in the beam when steered toward the

source would then be

Suppose the vector ! corresponded to an actual plane-wave source. If C were a matrix
having the property that this choice of I lay in the null space of the matrix (C! - 0).
the energy in the beam when steered in this direction would be infinite. If the direction
vector corresponding to the plane-wave source were the o.Al direction vector that lay in
the null space of C, one would therefore obtain a marked indication of the bearing of the
source.

While it is theoretically possible to have a perfect indication of source bearing by
this approach, the difficulty lies in finding the matrix C. This matrix must have the
property that direction vectors lying in its null space correspond only to plane-waves
eminating from actual sources. Assuming that the bearing of the sources is not known.
construction of the matrix C would seem impossible. However, one can construct a matrix
having a null space consisting of vectors which closely resemble direction vectors of
source plane-waves. The key idea of this procedure is to analyze carefully the
eigonvectors and eigenvalues of the correlation matrix.

JI.A. M anv z Method

The eigenvectors of the matrix R are defined by the property

-1, = ).i i i - l..... (12)

where X. is the eigenvalue associated with the eigenvector Vi. As correlation matrices

are conjugate-symetric (Hermitian), the eigenvectors form an orthonormal set. Assume
that the sensor outputs contain one signal and noise uncorrelated with the signal
(I - J+t). The result of computing R according to equation (5) for sufficiently large K
is

-4-
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2 - lu+#,5'. (13)

Q is the noise correlation matrix normalized to have a trace equal to the dimension M of

the matrix R. I is the direction vector of a plane-wave source and has a squared-norm
equal to M. The cross-terms involving signal and noise are assumed to be negligible. If
the noise correlation matrix equals the identity matrix (i.e., only sensor noise is
assumed to be present), the eigenvector corresponding to the larest eigenvalue (heay
ref erred to as the "largest eigenvector") is equal to the vector J with eigenvalme equal

to 2i+N 2* The remaining N-i eigenvectors of I consist of those vectors orthogonal to
a s

2
and each has eigenvalne a I f p i aern, line arly-independent signals

n

AV i - l .... Op are present so that the correlation matrix is of the form

R- C2I+ .2A (14)i 3 si i2" 14

the p largest eigenvectors correspond to the signal terms and the N-p smallest are
orthogonal to all of the signal direction vectors. Note that the largest eigenvectors are
not necessarily equal to the signal direction vectors in this case; these eigenvectors
comprise an orthonormal basis for the vector space containing the signal vectors.
Consequently, one cannot always inspect the largest eigenvectors and determine the signal
vectors directly.

Define CV' to be the sum of the outer products of the *-p smallest eigenvectors

. !ili. (15)

As the p largest eigenvectors are orthogonal to each of the N-p smallest, CEVYi -

i - N-pAl,..... As the p largest eigenvectors span the space containing the signal
vectors, each signal lies in the null space of CEy and i " 1. In this manner,

perfect resolution of the bearing of multiple sources can be obtained from an eigenvector
analysis of the correlation matrix L

Note that in computing the beam energy (equation 11), the matrix C need never be

computed. The correlation matrix R can be expressed in terms of its eigenvectors as

and the inverse of R as

By convention, the smallest eigenvector is denoted by the subscript 1, the next smal-

lest by 2, etc.

-5-
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Because of the orthogonality property of the eigenvectors of a correlation matrix, the

quantity CE- CV appearing in equation (11) becomes

()CEV b Xoe1

It is this matrix which is computed in the evaluation of the quadratic form of equation
(11).

flt--i

SV(k) - -1Cj~l, -1l1 (19)

The following sequence of computations constitute the eisenvector method.

1. Compute the correlation matrix R.

2. Decompose the matrix R into its eigenvectors and aigenvalues.

3. Determine the number p of sources present in the acoustic field.

4. Compute the -argy in the beams corresponding to all possible bearings (equation
19).

5. The major peaks in this spectrum correspond to acoustic sources.

The methods of Ovsley[12]. Bienvenu(2, 31, and Schmidt[13] are similar, but differ

somewhat from the eigenvector method just described. The expression for IC- is truncated
as in equation (5); however, the small eigenvalues are set to the same value (taken here
to be unity). Instead of evaluating the quadratic form of equation (11), the spectral
estimate of the MUSIC method can be expressed by

-lSU~(k) =(!'C vC V)'-I "~ liv= I'Vii2J (20)

This estimate can also be evaluated in the same manner as equation (11) if the matrix C is
redefined to be

A steering vector can be defined (equation 6) when the latt 'r approach is used to express
the MUSIC spectral estimate. Under the conditions just described, this spectral estimate
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also has the capability of resolving source bearing perfectly.

The presumption of the preceding analysis has been that the noise correlation matrix
- is equal to the identity matrix. It is this key assumption which leads to perfect
bearing resolution. Imperfection in bearing resolution occurs when this presumption is
false. The noise field may contain move than just sensor noise: for example, isotropic
noise may also be present. In addition, a finite amount of averaging is used to compute
the correlation matrix IL Even if the noise field were spatially white, an empirical
noise correlation matrix would not be an identity matrix. Either of these situations can
reduce the resolution of the eigenvector and MUSIC methods.

The performances of the sigenvoctor method and of the MUSIC method under these more
realistic conditions are analyzed mathematically in the appendix. From this analysis, an
approximate lower limit on the energy in the beam when steered on-target using the
eigenvector method is found to be

2
Cr

S(k) 2 2 (2s
2

2 N K

A similar result is obtained for the MUSIC method. The quantity y is a measure of the
spread of the sigenvalues a. of Q. For the eigenvector method, this quantity is given by

T MI(a -- K a (22)T=V2 i " -

and for the MUSIC method by

2 6(Ca. -CL C c2)2 (23)
YMUSIC M i -l m

2 2
2 tends to be smaller than yE. In either case, the quantity y is an implicit

function of the time-bandwidth product K. Generally speaking, y will decrease with
increasing K, tending toward the spread of the eigenvalues of the spatial correlation
matrix of the underlying noise process. If the theoretical noise correlation matrix
equals the identity matrix (i.e., spatially white noise), the spread of its eigenvalues is
zero. Otherwise, the spread is nonzero.

The first term in the denominator of equation (21) determines how large the energy
peak will be if an infinite time-bandwidth product were available. The second term
describes how the size of the energy peak depends on K. The larger of these will dominate
the expression in equation (21). When steered off-target, the energy in the beam produced
by the eigenvector method coincides with that produced with the minimum energy approach.
The ratio ( of the on-target to off-target beam energy can be used to assess the size of
the peak in the beam energy as the direction vector I is scanned through all possible
bearings. Then only sensor noise is present, this quantity is given in the minimum energy
method by 10]

-7-
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+ 2

S -. (24)
a
an

In the oigenvoctor method and the MUSIC method, this quantity is given by

2
Va
a 2 2 (25)

S

From simulation studies, this quantity can be somewhat larger (a few dB) in the MUSIC
method than in the eigenvoctor method. Comparing equations (24) and (25). one concludes
tnst when the eigenvector method is used, the array appears to consist of a number of

elements X given by

2

-A 2_ (26)
2 2 K

In most instances, this quantity is larger than the actual number of sensors M.

JI.J. Siuato Results

Computer simulations were used to evaluate the sigenvector and MUSIC methods and to
compare them with the minimum energy method. In these studies, sequences of the data
vector 1,-S + Hi were produced. The parameters of the signal vector j were defined as

described in section II. The noise vector Hi consisted of identically-distributed complex

Gaussian noise components. The covariance matrix of this random vector could be specified
by the user. Each noise vector was generated to be statistically independent of all other
noise vectors. The empirical correlation matrix R was then computed as in equation (5)
and its oiSenvectors and eigenvalues computed according to a QL alSorithm(81.

With one exception, each step of the procedure outlined above for the eigenvector
method was followed. As the number p of sources present in the acoustic field was known
by the user, it was supplied by him. In a physical situation, this parameter would not be
so readily known. However, the purpose of the simulations was to determine the validity
of the theory and to test how well the methods could perform. The effects of inaccurate
choices for p are described in a later section.

A comparison of the bean energies produced by the minimum energy method and by the
eisenvector method is shown in figure la when one source is present in the acoustic field.
A similar comparison is found in figure lb for the USIC method. Note that the height of
the main peak relative to the background noise level varies with K. the time-bandwidth
product, in both methods whereas it does not in the minimum energy method. In this
ezample, sensor noise (i.e., spatially white) is present. For the array length used, the
second tern is denominator of equation (21) was larger than the first. Simulated and
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theoretical values of I/EV are compared in Table I. The theoretical prediction of the

value of this quantity is close to that obtained from the simulations.

The spectra obtained from the eigenvector method and the MUSIC method differ only
slightly in these examples. The latter method tends to produce much flatter off-target
spectra. The small eigenvalues of the correlation matrix I tend to represent the noise
field (see the discussion following equation 13) and the equalization of these values will
whitenM the background noise, thereby resulting in a flat spectrum. This effect is
further illustrated by considering a case where isotropic noise is present in the acoustic
field (figure 2).

jj..C. jeouto 2L Multiple Taret

Cox[6] derives analytic expressions for the limits to which the minimum energy method
applied to a linear array can resolve two equi-strength, incoherent acoustic sources.
There, OresolutiorL is defined as the minimum bearing separation at broadside at which two
targets can be distinguished by evaluating beam energy. Here, a slight dip in the beam
energy is required when the array is steered between the sources. The critical factors
determining the resolution of beams formed by the minimum energy approach are apertureD

(defined as the spatial extent of the array relative to a wavelength - ), the number of

elements in the array (W), and the sensor signal-to-noise ratio (a /a 2). Cox's results
s n

are summarized in figure 5 of his paper[6J; an approximation to those results is

2 a_ [e 1 27)

n

where e is bearing separation of the two targets.

When the eigenvector method is applied in situations such as these, targets are more
easily resolved and furthermore, the resolution capabilities of the array are increased.
Figures 3 and 4 display typical examples of these cases. A theoretical prediction of the
degree to which resolution is increased can be obtained from equation (27). If one

substitutes I evaluated by equation (26) for M, the value of e thus obtained is the
resolution limit of the eigenvector method and the MUSIC method. A comparison of the
resolution obtained from some of the simulations with that predicted by the theory is
shown in Table I. The degree of agreement between theory and simulation results implied
by Table II is valid for all of the simulations.

Ef. L.t o I auoz Maigg In, z
The theoretical and simulation results presented thus far are valid only when the

parameter p equals the actual number of acoustic sources. In practice, this quantity may
not be known and one questions the sensitivity of the eigenvector and MUSIC methods to an
incorrect choice of p. This sensitivity was studied through the simulations; no analytic
results were obtained on this issue.

An incorrect choice for p has different effects on the eigenvector and MUSIC methods.
In both methods, choosing p too small does =ot result in a beamformer having superior
bearing resolution properties to the minimum energy method. In the sigenvector method,
the spectra tend to resemble those obtained with the minimum energy method. In
particular, by assuming no sources are present (setting p 0 or the matrix CEV I), the

-9-
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sigenvector method is exactly the minimu energy method. In contrast, the MUSIC method
tends to produce a number of spectral peaks equal to p. For example, if a value of zero
is chosen for p. a uniformly flat spectrum results. The peaks that result from nonzero
choices tend to correspond to the bearings of acoustic sources; however, which sources are
thus located is not easily predicted. When p is chosen too large, the bearing resolving
capabilities of either method are not greatly reduced. The spectra produced by the
eigenvector method tend not to vary from that obtained with the proper value of p. The
MUSIC method tends to produce spurious peaks that do not correspond to physical sources.
The effects are illustrated in figure 5.

It. eslutin "d Azzax ya"

While these approaches increase the resolution of bearing, this increase in
resolution is accompanied by a decrease in the array gain. To show this. assume the
correlation matrix R is of the form given in equation (13). The signal-to-noise ratio at

each sensor is therefore 2 /a 2. The signal-to-noise ratio in the beam output is the
s a

quantity

(28)
2

The array gain G is the ratio of these signal-to-noise ratios.

G -a (29)

Recalling that the steering vector in this case is given by

T = !(30)

I.1-1 c

and setting the direction vector to correspond to the source (! - ), the array gain
becomes

B v , . (31)
-1 -1

IC. QK

As the matrix Q is given by

2 3 (32)a

the denominator of equation (31) becomes

110 - 10 -
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C, - (s'C'R-c - aS C'a 2-..' - ) (33)

n

so that we obtain

2

G .

-1 2 (34)

.C, C-Sl- iCa

For the eienvctor method,

-1v -1lCV- ierL (35)

and the array gain becomes

2 -1

In the MUSIC method, the ratio appearing in the denominator of equation (34) can be
bounded using the Schwarz inequality.

,% SICI.S17 %SI , _ (37)

Equality occurs only when the X-1 smallest eigenvalues of R are identical (i.e., Q - I).
This bound can be used in equation (34) to obtain an upper bound on GMUSIC if the bound is

2

not smaller than as .  As the expression thus obtained equals GEV (equation 36), this

condition is satisfied. Consequently,

GUsic * GV (38)

Considerig equation (36), , is a monotonically increasing function of the quadratic

form'Cj-1C . Therefore, whenever one decreases this quadratic form to improve the

indication of bearing (equation 19), the array gain decreases in the eigenvector method.
Because of the relationship given in equation (38), the array gain obtained with the MUSIC
method also decreases. In the limit, perfect indication of bearing (a zero-valued
quadratic form) corresponds to zero array gain with either method.

i .. -11-
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The eisenveotor method can enhance the bearing-resolving capabilities of an array.
Here, the eiSenvectors and eigenvalues of the correlation matrix must be found and the
weighted sum of Fourier transforms of the eigenvectors computed. In the minimum energy
method, the inverse of the correlation matrix must be found and the quadratic form of
equation (8) computed. Roughly speaking, the computational complexities involved in the
use of the eigenveoctor method are not excessive when compared to those required in the
minimum energy method.

The degree to which the resolving power is increased is related to the quantity X.
is prportonal (N/M 1 /4 .  oneetyt

Because of equation (27), this increase is proportional to (XIM) Consequently, to

increase the bearing resolution by a factor of 2 requires the virtual number of sensors X
to be 16 times the actual number. Referring to Table I such large virtual array lengths
can be obtained only when large time-bandwidth products are possible. Under these
circumstances, enhanced bearing resolution is possible. For a given time-bandwidth
product, the smaller the number of elements in the array, the greater the increase in
bearing resolution.

The eigenveoctor method and the MUSIC method produce quite similar results. They
differ in at least two respects, however. The first is that a non-zero value of p, the
number of assumed sources in the acoustic field, must be chosen in the MUSIC method. If
the value of p is not close to the actual value, the spectra thus obtained can differ from
that obtained with the proper value: spurious peaks appear and/or peaks can be missed. In
contrast, the eigenvoctor method is less sensitive to the choice of p. Second, the shape
of the spectrum of the background "noise" is drastically altered in the MUSIC method. For
example, the variations due to low-level sources or to the physical noise spectrum are
lost (see figure 2. for example). This portion of the spectrum can also vary as p is
changed; this effect is much less pronounced in the eigenvector method.

The increase in bearing resolution is obtained at the expense of array gain.
Consequently, if more than bearing information is required, other techniques should
probably be used to obtain them. One can conceive of the eigenvector method being used to
acquire source bearing and this information being used to steer a beam with the minimum
energy method so as to analyze the waveform produced by the source. Note that this two-
step procedure need only be sequential in a conceptual manner. Because of the close
relationship between the two methods, obtaining the steering vector for the minimum energy
beamformer means including more terms in the eigenvector decomposition of L

The decrease of array gain with increasing resolution raises many theoretical issues.
The mini um energy method is known to yield the optimal value of array gain.
Consequently, any method which has greater resolution capabilities cannot also increase
array gain. Can array gain be maintained while increasing resolution or is increased
resolution always obtained at the expense of array gain? The present method has the
latter property. A theoretical understanding of the limits to which array gain and
resolution can be traded against each other would be of interest.

The main issue not addressed in this study is the determination of the number of
sources - p. From the analysis presented in section IV, the number of sources corresponds
to the number of dominant eigenvalues in the matrix R. Determining p in this way can be
difficult when small time-bandwidth products are available and isotropic noise is present.
Reasonably saurate methods of determining p from the sigenvalues of I are not known at
this time. 4
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Ansndi

Let the vector I of sensor outputs be of the fer I-a A + a N where I denotes the

source direction vector as before and 11 denotes additive noise. The correlation matrix a
is computed empirically according to equation (5) to yield.

a 2 Q + 0nCsS + (sSa (A.)

where Q - a statistical estimate of the noise correlation matrix and
ii

1-i[1 , an estimate of the average noise component. The vectors Ni are assumed toKI 
i

be statistically independent random vectors; each component of kji has zero mean and unity

variance. Consequently, the components of the vector . have zero mean and energy 1/1.
Define the matrix P to be the noise-related terms in equation (A.1).

a a
P - Q + ' + 71' (A.2)

n n

Consequently, the expression for It in equation (A.I) can be written more simply as

I 2P + s2M (A.3)n 3

The estimate of the energy in the beam pointed in the I direction is given by equation
(11). Following Cox[6], this expression can be written as

ar 1+'S.1)(.4

S(k) "NMAX(

.jCP- N+(I sin 2(CL, .1;

where () j- 'P (a 2 / ) is the signal-to-noise ratio of the beam output obtainedN MAX a n

with the optimally-chosen steering vector and sin 2(Cl, 1; P71) is the sine-squared of the

angle between the vectors Cj[ and I with respect to the matrix P71. The matrix CEv is

given by equation (15) when p, the number of signals in the acoustic field, is assumed to
be one. The critical aspect of equation (A.4) is the quantity CE!. This quantity can be

viewed as the projection of the vector I onto the set of oigonvectors orthogonal to the
largest •igenvector of R. As indicated earlier, these eigenvectors are approximately
orthogonal to the signal vector. To a good approximation, the vector CEVIE is orthogonal

to J, thereby implying for all ! that sin 2(C W, ; P-) . 1. Expression (A.4)

therefore becomes

- 14 -
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2a
S (k). (A.5)

%VP CE4

Then I does not correspond to the signal direction vector , the matrix CEV has little

effect on the vector !. In this case, one obtains

2
a

SMk u

the result obtained with the minimum energy estimate. Consequently, one should expect the
eigenveotor procedure and the minimum energy procedure to yield the same numerical values
when steered off-target. As the bean is steered toward the source, the two estimates will
begin to differ as the matrix CEV begins to affect the vector !.

In the succeeding analysis the inverse of the matrix P is assumed to be approximately
equal to the inverse of Q in the computation of the quadratic form appearing in equation
(A.5). Inspecting equation (A.2), this approximation will be less accurate as the
signal-to-noise ratio (a / a) increases and as the amount of averaging (1) decreases. The

energy estimate can be written approximately as

2

S(k) - (A.6)

The quadratic form in equation (A.6) can be interpreted as the squared-length of the

vector C.1 with respect to the norm induced by the matrix Q-. We therefore seek an

expression for this quantity when -..

Assume that YN, the largest eigenvector of R. is given by V 1 +t whore & is a

vector orthogonal to S. Consider the vector diagram shown in figure Al. The vector & is
defined to be orthogonal to the eigenvoctor J+L. Vhat is sought in equation (A.6) is the
square of the length L of the vector j projected onto 1. As shown below, the length of A
is small compared to 1; therefore, the quantity L will be approximately equal to the
length of A. To a good approximation, the energy in the beam steered on-target is given
by

@n

S(k) = (A.7)

where 2112 denotes the squared-norm of j with respect to Q-.
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I 2 -L,4- x.

The definition of an eigenvector implies that this vector must satisfy

I (sg) - €S+L). (A.8)

As the vectors I and £ are assumed to be orthogonal, the oigenvalue XX can be found

through the relationship

I'R.I+L)- Y1'10£ - X

Using equation (A.3) for I, we have

S=.2 (A.9)

An expression for the vector L is obtained by evaluating the quantity R(1+)- Y. After

some manipulation and assuming that the length of £ is small compared to the length of .,

we have

2~~~ -12 2SQ

-(XM.X-e2n -(ae241- a n ' + Noa Kn -LN a u 11) (A.10)

This expression for the vector e consists of a matrix ( I-u2 Q)-i times the sum of

two torms. The first torm, denoted by I1' is comprised only of the signal-related terms

and the matrix Q.

2 C 0 ~ 2 L~q (A.11)

The second tor contains the terms depending on the average noise vector .

A2 = Mao (A.12)

If ono assumes the noise vector j to be zero (implying infinite statistical averaging).

the vector I is given by the quantity L - (.XI-a2 W- 11. Note that if Q - I. the

quantity 1 - j which implies L - f, Therefore, the signal vector I corresponds to

*the largest oigonvoctor of R; this result is consistent with the analysis described while
leading to equation (5). The term expresses the effect on the OigOnvoctor of the
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statistical averaging process. Note that if noise field can be described as containing
only sensor noise (Q - 1), the expression for L is dominated by k. The vector k can

be interpreted as the noise vector which results when all of its components in the
direction of the signal vector S are eliminated (equation A.12). The squared-magnitude of

this vector therefore depends on the mangle* between the vectors ff and _. This angle will

be a random quantity when the computation of R is completed. This vector will be largest

when a and I are assumed to be orthogonal. In this case. S' 0, an the expression for

becomes

V2 - Msau. (A.13)

Def ine to be the product of a..1X- Q
-1 and J . The vector j is therefore

written as

J- "l11 2 (A.14)

An expression for the norm of IL can now be obtained. Let i denote an eigenvector of

the matrix Q and ai the associated eigenvalne. As these eigenvectors are orthonotmal, any

vector can be expressed as a linear combination of then. As is also an eigenvector of

(XI-2 Q) - . IL and '2 can be written as

2 ~ m(A.15a)

22 ii (A.llb)

2

The quantity Xinn can be simplified. Using equation (A.9) and assuming both .L and

are msall compared to ., we have

2 22
a No + AM S - a) a

2 2

The quantities within the parentheses are comparable and further assuming Ma 2 a 2 we

have

-17-
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2 2. (A.16)
M-o - M.

The norm of & depends upon the angle between these two vectors. Based on statistical

argments, a zero-mean vector obtained from averaging (1 in this case) will be nearly

orthogonal to any fixed vector. Consequently,

•+
'IL.. II'112 ~ (A. 17)

Q QiQ

Now

111111,- - U .m-'m 2

u L (.-G 22) 2

To evaluate this expression, the relationship between the signal direction vector S and
the eigenvectors of Q must be specified. If .1 were proportional to an eigenvector of Q.
the quantity 1 411_1 would be zero. As the norm of B1 will appear in the denominator of

the expression for bean energy (equation A.7), one can obtain a lower bound on the energy
in the bean by assuming the largest-possible value for its length. To approximate the
maximal length of a assume that I does not prefer 3M of the eigenvector directions of

12
Q. A reasonable mathematical description of this situation is that l1f2  " In this

instance, we have using equation (A.16) that

4

. -A _ ,22(&1) 2 (A.18)

The quantity in the summation depends only on the eigenvalues of the matrix Q. Define the

quantity y to be

2v (Gi a 2)2. (A.19)

Then, equation (A.18) becomes

4 2

2 a- _1 -A.20)

1 - al 4
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As the term ] is a random quantity, its squared-nora is defined to be

2I Ir .2 I (A.21)

111[2 112- lj - (.1

where E[-] denotes expected value. To a good approximation. U. is an sigenvector of the

correlation matrix associated with the random vector 1. Consequently.

E[IHU 1i2]_ A

so that

2

Substituting equations (A.18), (A.22). and (A.17) into equation (A.7). we have finally

2

SEV () 2 2 (A.23)

2 M I

as an expression for the energy in the beam when steered toward the source.

The analysis for the MUSIC method differs only in detail from that just described.
In this method, the speral estimate is given by

S music(> - (rCiCEV.E - 1  (A.24)

Off target, C.1 approximately equals X, implying that SUSIC(k) = 1-1. When steered on

target, the expression for the MUSIC estimate differs little from that given in equation
(A.7). The significant difference is that the norm of & is computed with respect to the

identity matrix instead of If'. The quantity of interest is tharefore

114112 11ll111l2 + 11I12I 2 .

The norm of l2 with respect to I equals that computed with respect to 4-1 the expression

- 1!I -
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for the noa of 1 is

4

Therefore, the on-target been energy in the MUSIC method is given by

2 2

SS Wmusic - 2 2 (A.25)

2 M K
$

MUSIC2where TMUSIC is defined to be

TMUSIC " i (G

iwi a

• e"". ... .. .... . n't~lnUla . ...- Ia '... . -- ii 1-0, ----- '' ". . . "' _ .. ... ..
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Table I. Empirical and Theoretical Peak-to-Background Ratios ,

The results of computer simulations and theoretical predictions of the value of (/ are
shown. In the simulations, an equally-spaced linear array containing 10 sensors was
assumed to be present in an acoustic field containing sensor noise and a plane-wave
source. The sensor signal-to-noise ratio was 0 dB. Values of y were computed in separate
simulations from noise-only correlation matrices having the same time-bandwidth product.
The source Was assumed to be narrowband, with all of its source energy concentrated in one
temporal-frequency analysis bin. The sensor spacing is one-half wavelength. Plot of bean

A

energy vs. bearing were obtained and empirical values of (U estimated. The quantities (IME

and UIV correspond to these empirical values.

EV E

20 18 10 13 13
50 46 11 18 17

100 90 12 22 20
200 183 11 27 23
500 461 11 29 27
1000 940 11 32 30
2000 1784 11 34 33
5000 4597 11 39 37
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Is II. Empirical and Theoretical Resolution Limits

results of computer simulations and theoretical predictions of resolution limits are
manized. The array configuration used in Table I vas used here. The sources wer
metrically located about broadside (0 degrees). Plots of beam energy vs. bearing were
ai ned and the separation between the sources reduced until they could just be resolved.
measurements of separation were &ade in half-degree increments. The angular

,ntities 0 are indicated in degrees.

iE EV EV

20 8 7.5 7.5
so 8 6 5.8

100 8 6 5.4
200 8 4.5 4.6
500 8 3.5 3.7

1000 8 3.5 3.0
2000 8 3 2.6
5000 8 2.5 2.1

-2 -
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Fiure 1. Energy in beaus fomed by the minimum energy method (ME) and by the *igenvector
method (EV) are plotted against bearing for a linear array. Energy is expressed in dB

relative to the peak value. Bearing is expressed in degrees with zero corresponding to

broadside. The sensors are equally spaced and separated by half a wavelength. The source

was assup.ed to be narrowband. with all of its source energy concentrated in one temporal-

frequency analysis bin. In each sub-figure, sensor noise and one source located at 00 are

present in the sound field; the sensor signal-to-noise ratio is 0 dB. The results

obtained when two time-bandwidth products (W) are used are shown in each sub-figure for
each method.

Figure ,. Beam energy is plotted against bearing when one source (located at 00) and

isotropic noise are present in the sound field. The array configuration is similar to
that described in figure 1, the only exception being Chat the sensor spacing is three-

eighths of a wavelength. The sensor signal-to-noise ratio is 0 dB. The results of

applying the minimum energy (ME), eigenvector (EV), and MUSIC methods are shown. The
time-bandwidth product here is 50; the theoretical values of ( corresponding to this

situation are (/F - 15.7 dB and (IMUSIC m 16.4 dB.

Fiure . Beam energy is plotted against bearing when two sources are present in the
acoustic field. The conventions defined in Figure 1 apply to this plot. Here, the sensor

si-gal-to-noise ratio of each source is 0 dB and the the sources are located at -5 ° and

Fiue 4. Beam energy is plotted against bearing when two sources are present in the
acoustic field. The conventions defined in Figure 1 apply to this plot. Here, the sensor

SIgnal-to-noise ratio of each source is 0 dB and the the sources are located at -3 and
+3.

Figure 1. Beam energy is plotted against bearing with the number p of terms truncated

fram the eignevector expansion of 971 as a parameter. The parametric beam energy
functions in each panel is plotted with the same vertical scaling. A linear array of ten
equally-spaced sensors (spacing equal to three-eights of a wavelength) is present in an
acoustic field. Three incoherent sources are present in the acoustic field: two have
unity amplitude and are located at bearings +5 and -5 while the third has amplitude of

one-half and bearing -40 . Isotropic noise is also present in the acoustic field; the
sensor signal-to-noise ratio (relative to the larger signals) is 0 dB. The time-bandwidth
product in both panels is 50. The upper panel displays the result of applying the

igenveoctor method and the bottom panel illustrates the result of applying the MUSIC
method for the same set of data. Note that tke proper value of p for these data is p-3.

ituLga r 1. Relationship of the Signal Vector and the Largest Eigenvector
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